
Geo 892 – 001: Biophysical Models and Applications in Ecosystem Analysis

10:00 am – 4:30 pm; GEO 120

March 10: Carbon fluxes

Update: manuscript and journal

 Lecture 1: Modeling Ecosystem Production (Chapter 2)

 Lecture 2: Modeling Ecosystem Respiration (Chapter 3)

 Logistics for April 1: Installations at Battle Creek and KBS



Modeling Ecosystem Production (Chapter 2)
2.1 Introduction
2.2 Core biophysical Models for Ecosystem Production

2.2.1 Michaelis-Menten model
2.2.2 Landsberg model
2.2.3 Farquhar’s model
2.2.4 Photosynthesis based on stomatal conductance (gs)
2.2.6 Light use efficiency (LUE) model
2.2.7 Nitrogen use efficiency (NUE) model
2.2.8 Water use efficiency (WUE) model

2.3 The datasets for Modeling Photosynthesis
2.4.1 Light response models
2.4.2 Results from Farquhar’s model
2.4.3 Results from Ball-Berry Model
2.4.4 Other models

2.5 Summary Soil respiration (Rs)

Biophysical Models and Applications in Ecosystem Analysis



Photosynthesis is the first step for assimilating atmospheric CO2 into organic substances in 
an ecosystem

• Photosynthesis is a physiological process in which plants, algae and certain bacteria 
convert solar energy and CO2 to chemical energy and carbohydrate – such as glucose, 
sugar, and cellulose.

• “Photosynthesis’ is a combination of the Greek words “light" and "putting together". 

• The process was discovered by Dutch physician Jan Ingenhousz in the late 1700s

• Chemical conversions take place with Chlorophyll a. 

• Two types of chlorophyll pigments absorb light in the blue and red part of the visible 
spectrum



6CO2 + 12H2O + Solar Energy → C6H12O6 + 6O2 + 6H2O

https://www.google.com/search?q=photosynthesis&sxsrf=ALeKk03bd
Uf3GFtuUR0puba2vHU7QDHz3Q:1601140211398&tbm=isch&source=
iu&ictx=1&fir=TLzQkqgwJaAQvM%252CQhH9beDDf9MhbM%252C_&
vet=1&usg=AI4_-
kTGlmLfxkaRdKT0RzmGX_jPgpfxbw&sa=X&ved=2ahUKEwjUq6SMqIfs
AhXUGM0KHfZUDVcQ_h16BAgKEAk#imgrc=TLzQkqgwJaAQvM

Plants use sunlight, 
water, and the gases in 
the air to make glucose, 
which is a form of sugar 
that plants need to 
survive.

https://www.youtube.com/watc
h?v=FfLLHQDgpjI 

Chemical expression has several 
forms, including the following 
one:

https://www.youtube.com/watch?v=FfLLHQDgpjI
https://www.youtube.com/watch?v=FfLLHQDgpjI


https://quizlet.com/ca/341425087/c4-plants-diagram/ 

https://www.youtube.com/watch?v=13h5oC4jIskComparing C3, C4 and CAM

More YouTube videos:
https://www.youtube.com/watch?v=HbLg4lMpUa8
https://www.youtube.com/watch?v=Dq38MpYOb8w

CAM

https://quizlet.com/ca/341425087/c4-plants-diagram/
https://www.youtube.com/watch?v=13h5oC4jIsk


6CO2 + 12H2O + Solar Energy → C6H12O6 + 6O2 + 6H2O

Chemical expression has several forms, including the following one:

A-Ci curve Light response curveWater limitation

Stomata regulations

Temperature
Nutrients

others

enzyme



Measuring photosynthesis: chamber-based at leaf level (snapshots)

LiCor6400 (LI6800)
CO2 & H2O concentration
PAR, temperature



Measuring photosynthesis: chamber-based at leaf level (continuous)



Measuring photosynthesis: EC tower
Open-path EC tower
daytime minus nighttime
(NEE = GEP – Reco)

LI7700
CH4



Measuring photosynthesis: Biometric approach (tree ring, DBH)



Measuring photosynthesis: remote sensing modeling



Measuring photosynthesis: ecosystem modeling



2.2 Core biophysical Models for Ecosystem Production
2.2.1 Michaelis-Menten model
2.2.2 Landsberg model
2.2.3 Farquhar’s model
2.2.4 Photosynthesis based on stomatal conductance (gs)
2.2.6 Light use efficiency (LUE) model
2.2.7 Nitrogen use efficiency (NUE) model
2.2.8 Water use efficiency (WUE) model

Major variables and Symbols
Pn/An:  Photosynthesis rate (µmol m-2 s-1) 
PAR (PPFD): photosynthetically active radiation (µmol m-2 s-1) 
VPD:  vapor pressure deficit (kPa)
Io or Icomp  light compensation point  (μmol m−2 s−1)
Γ*:  CO2 compensation point (ppm)
Pmax/Amax:  maximum Pn or A (μmol m−2 s−1)
Vmax:  maximum Pn under CO2 limited (μmol m−2 s−1)
Jmax:  maximum Pn under light limited (μmol m−2 s−1)
gs:  Stomata conductance (μmol m−2 s−1)



2.  A-Ci curve1.  Light response curve

https://www.researchgate.net/publication/263642910_Effects_of_Elevated_CO2_Concentration_and_Temperature_on_Physiological_Characters_of_Liriodendron_tulipifera/figures?lo=1

Jmax Vmax

Icomp Γ*

Slope: efficiency Slope: efficiency



2.2.1 Michaelis-Menten model

𝑃𝑛 =
𝛼 ∙𝑃𝐴𝑅 ∙ 𝑃𝑚

𝛼 ∙𝑃𝐴𝑅+ 𝑃𝑚
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𝑃𝑛 =
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MM model with Respiration (Rd)

Michaelis constant (Km) of the enzyme is an inverse 
measure of affinity. Km is the value when Pn reaches 
half of the Pm. 

PAR



2.2.1 Michaelis-Menten model

𝑃𝑛 =
𝛼 ∙𝑃𝐴𝑅 ∙ 𝑃𝑚
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2.2.1 Michaelis-Menten model

Landsberg & Sands (2011) introduced an additional shape factor (β) into a non-rectangular hyperbolic model

𝑃𝑛 =  𝑝𝑚 ∙
2 ∙ 𝛼 ∙ 𝑃𝐴 Τ𝑅 𝑝𝑚

1 +  𝛼 ∙
𝑃𝐴𝑅
𝑃𝑚

 + 1 + 𝛼 ∙
𝑃𝐴𝑅
𝑃𝑚

2

− 4 ∙ 𝛼 ∙ 𝛽 ∙ 𝑃𝐴 Τ𝑅 𝑝𝑚

This model is virtually the same as Eq. 2.1 when β = 0. The value of β should be less than 1 for simulations. 

An alternative expression of the non-rectangular hyperbolic model is applied by Peat (1970) as:

 𝑃𝑛 =
1

2∙𝛽
 𝛼 ∙ 𝑃𝐴𝑅 + 𝑃𝑚 − (𝛼 ∙ 𝑃𝐴𝑅 +  𝑃𝑚)2−4 ∙ 𝛼 ∙ 𝑃𝐴𝑅 ∙ 𝑃𝑚 ∙ 𝛽  

Y=a+b*x + c*X2



2.2.2 Landsberg model

ቁ𝑃𝑛 =  𝑃𝑚 ∙ (1 −  𝑒𝛼 ∙ 𝑃𝐴𝑅− 𝐼𝑐𝑜𝑚𝑝
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Line α Pm Icomp

1 0.008 10 200

2 0.004 10 200

3 0.002 10 200

4 0.004 8 100

5 0.004 6 100

6 0.002 10 300

In-class exercise
• Create a spreadsheet model for MM and 

Landsberg model to explore the sensitivity of 
each parameters.

• PAR values vary from 0 to 2000 (µmol m-2 s-1) 



2.2.3 Farquhar’s model

Photosynthesis rate for Rubisco-limited, RuBP-limited, and product-limited 
assimilations (Ac, Aj, and Ap ).

Ac as a function of intercellular CO2 concentration is described by FvCB equation:

𝐴𝑐 =
)𝑉𝑚𝑎𝑥 ∙ (𝑐𝑖 − Γ∗

൰𝑐𝑖 + 𝐾𝑐 ∙ (1 +
𝑂𝑖
𝐾𝑂

Vmax is the maximum activity of Rubisco

ci is the intercellular CO2 concentration (μmol mol−1),

Γ* is the CO2 compensation point in the absence of day respiration (Rd),

Kc is the Michaelis-Menten constant of Rubisco for CO2,

Oi is the oxygen (O2) concentration in the atmosphere (209 mol mol-1),

Ko is the Michaelis-Menten constant of Rubisco for O2. 



2.2.3 Farquhar’s model

Γ* is calculated as:

 𝛤∗ =
0.5∙𝑂𝑖

2600∙0.57𝑄10 

Kc for CO2 is calculated as:

 𝐾𝑐 = 30 ∙ 2.1𝑄10

Ko for O2 is calculated as:

 𝐾𝑐 = 30000 ∙ 1.2𝑄10 



2.2.3 Farquhar’s model

RuBP-limited photosynthesis rate (Aj), also commonly known as light-
limited photosynthesis rate, is calculated as:

 𝐴𝑗 =
J∙(𝑐𝑖−Γ∗)

4∙𝑐𝑖+8∙Γ∗ 

j is the electron transport rate (µmol m-2 s-1) and varies with absorbed 
photosynthetically active radiation (aPAR).

Finally, the product-limited photosynthesis rate is calculated as:

 𝐴𝑝 = 3 ∙ 𝑇𝑝

Tp (μmol m−2) is the triose phosphate utilization rate. This rarely limits the rate of 
photosynthesis under physiological conditions



2.2.3 Farquhar’s model

The four major parameters that are needed to fit Farquhar’s model 

Vmax (μmol m−2 s−1),
Jmax (μmol m−2 s−1), 
Tp (μmol m−2 s−1)
Rd (μmol m−2 s−1)

Γ∗

𝛤∗

https://www.researchgate.net/publication/236199968_Modeling_C3_photosynthesis_from_the_chloropl
ast_to_the_ecosystem/figures?lo=1

Web Sources for A models

https://biocycle.atmos.colostate.edu/shiny/photosynthesis/
https://leafweb.org/

An is the least of the three rates: 𝐴𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝐴𝑐 , 𝐴𝑗 , 𝐴𝑝    

https://biocycle.atmos.colostate.edu/shiny/photosynthesis/
https://leafweb.org/


2.2.4 Photosynthesis based on stomatal conductance (gs)

• The diffusion rate is called stomatal conductance 
(gs, μmol m−2 s−1), which is proportional to the 
photosynthesis rate (An, μmol m−2 s−1). 

• This linear relationship is modulated by leaf surface 
CO2 and H2O concentration and varies among 
leaves and species. 

Ball-Berry model:

 𝑔𝑠 = 𝐾 ∙ 𝐴𝑛 ∙
ℎ𝑠

𝑐𝑠

• hs (ranging 0-1) is the fractional relative humidity at the 
leaf surface, 

• cs (μmol mol−1) is the CO2 concentration of leaf surface, 
• K is the slope constant of the model that represents the 

composite sensitivity of gs to CO2 concentration



2.2.4 Photosynthesis based on stomatal conductance (gs)

By reversing Eq. 2.13, photosynthesis is modeled as:

 𝐴𝑛 =
𝑔𝑠∙𝑐𝑠

𝐾∙ℎ𝑠
 

Stomata do not completely close, there is a minimum conductance value 
(go, mol m−2 s−1). The Ball-Berry model is also expressed as: 

 𝑔𝑠 =  𝑔0 + 𝑔1 ∙ 𝐴𝑛 ∙
ℎ𝑠

𝑐𝑠



2.2.4 Photosynthesis based on stomatal conductance (gs)

Leuning (1990) argued that the use of [cs – Γ] is more appropriate in the 
numerator, and he modified the original Ball-Berry model:

 𝑔𝑠 =  𝑔0 +
𝑎1∙𝐴𝑛

(𝑐𝑠−𝛤)

Leuning reasoned this new form was applicable because An → 0 when cs → Γ, 
rather than when cs → 0. With this model, the supply-constraint model of 
photosynthesis can be expressed as:

 𝐴𝑛 =
𝑔0

1.6∙(𝑐𝑠−𝑐𝑖)−𝑔1∙ℎ𝑠∙(𝑐𝑠−𝛤)



2.2.4 Photosynthesis based on stomatal conductance (gs)

Later, Leuning et al. (1995) made an additional modification to the model (Eq. 
2.18) for C3 plants as:

 𝑔𝑠 =  𝑔0 +
𝑎1∙𝐴𝑛

(𝑐𝑠−𝛤)(1+
𝐷𝑠
𝐷0

)

where D0 is the value of VPD at which stomatal conductance becomes zero. 

Lloyd (1991) proposed that gs is dependent of 𝐷. Medlyn et al. (2011) further 
emphasized the importance of g1 in the Ball-Berry model because of its sensitivity to 
environmental changes (e.g., temperature, soil water and nutrients). They also agreed 
with Leuning et al. (1995) that VPD, instead of relative humidity, should be used in 
modeling [An ~ gs] for a new form of:

 𝑔𝑠 =  𝑔0 + 1.6 ∙ (1 +
𝑔1

𝐷
) ∙

𝐴𝑛

𝑐𝑠
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Figure 2-4.  Simulations of stomatal 
conductance (gs) with different sets of 
parameters (Eq. 2.13).  Other curves can be 
generated by altering parameters in S2-2 
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Figure 2-6.  Changes in photosynthesis rate (An) with photosynthetically active radiation (PAR) (a) and CO2 
concentration (ca) (b) for two species in Wang et al. (2018) (data use permission received from the authors).



(a) Elymus dahuricus 

(b) Geniana straminea 
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Figure 2-7.  Fitted light response curves using three Michaelis-Menten (MM) equations (Eqs. 2.2, 2.3. and 2.4) and the Landsberg model (Eq. 2.5) for two 
species on the Tibetan Plateau (Wang et al. 2018). Details are included in the supplement spreadsheet LightR_models.xlsx (S2-4).
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(a) Figure 2-8. Changes in photosynthesis rate 
(An) of two species in Wang et al. (2018) 
based on Farquhar’s model (Eq. 2.6) with 
the maximum rate of Rubisco (Vmax) (a) and 
maximum rate of electron transport (Jmax) 
(b). Differences between Rubisco-limited 
model (Eq. 2.7) and light-limited model (Eq. 
2.11) are shown in (c).
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Figure 2-9.  Changes in stomatal conductance (gs) with photosynthesis rate (An) 
and leaf surface CO2 concentration for two species studied in Wang et al. (2018). 
An was estimated with Farquhar’s model (Eq. 2.6) and gs was estimated with the 
Ball-Berry model (Eq. 2.15). The data and regression results are included in the 
supplement document S-3 (Wang2018.xlsx).



2.2.6 Light use efficiency (LUE) model
2.2.7 Nitrogen use efficiency (NUE) model
2.2.8 Water use efficiency (WUE) model

Ecosystem primary production (GPP, or NPP), or canopy photosynthesis (Pn), can be 
simply molded as a portion of PAR – light use efficiency (ε): 

 𝑃𝑛 =  𝜀 ∙ 𝑊𝑎𝑡𝑒𝑟

LUE model for estimating ecosystem primary production is simple, using aPAR as the 
sole independent variable that is more available at ecosystem-regional-global scales. 
This advantage is the primary reason that the MODIS teams were able to measure 
global, continuous GPP based on Terra satellite data (Running et al. 2004). GPP is 
estimated as:

 GPP = [εmax ∙ mod(Temperature) ∙ mod(VPD)] ∙ aPAR

Scalars



Tmin TmaxTopt
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Figure 2-5.  Scalar development for modifying resource use efficiency (ε) from its 
maximum value (εmax). Both symmetric and asymmetric functions can be used for 
estimating ε from εmax. Maximum (Tmin), maximum (Tmax) and optimum (Topt) 
temperature are used for deriving temperature scalar of three asymmetric approaches.



PnET model
Pmax (µmol CO2 m-2 s-1) is calculated with a simple linear model based on a 
meta-analysis of prior publications:

 𝑃𝑚𝑎𝑥 = 𝛼 +  𝛽 ∙ 𝑁% 

Pn is further modified for suboptimal environmental conditions (see 
Section 2.2.6) as:

 𝑃𝑛 = ∝ ∙ 𝑃𝑚𝑎𝑥 ∙ ∆𝑇 ∙ ∆𝑊 ∙ ∆𝑉𝑃𝐷     
 



Water use efficiency (WUE) 

Assuming CO2 uptake and H2O loss are coupled, GPP at ecosystem can be 
molded as:

 𝐺𝑃𝑃 = 𝑊𝑈𝐸 ∙ 𝐸𝑇

Multiple resource use model (mRUE)

GPP = resource supply × proportion of resource supply × captured efficiency of resource use

When multiple RUEs are integrated, GPP can be modeled as:

 𝐺𝑃𝑃 = (𝑅𝑎𝑣𝑎𝑖𝑙1 ∙ 𝑅𝑎𝑣𝑎𝑖𝑙2 ∙ ⋯ 𝑅𝑎𝑣𝑎𝑖𝑙𝑛)1/𝑛∙
(𝑅𝑈𝐸1 ∙ 𝑅𝑈𝐸2 ∙ ⋯ 𝑅𝑈𝐸𝑛)1/𝑛



Summary

• Models based on light response curve are easy to understand and use.  Only a few 
parameters (2-4) are needed to construct these models. Much more efforts are needed to 
examine the influences of other potential driving forces on model parameters.

• Physiological models have solid chemical and physical processes and theoretical 
foundations. Farquhar’s model is based on the Kinetic energy concept of the Michaelis-
Menten model as well as the chemical processes of photosynthesis, whereas the Ball-Berry 
family of models are rooted in the gas diffusion process and the corresponding properties 
of gases and physical conditions.

• A large number of parameters (5-10) are required for both Farquhar’s model and the Ball-
Berry models. These parameters are often difficult to measure or estimate. When these 
models are used to model ecosystem production, a tremendous amount of ancillary data 
on species composition, structure, soil conditions and microclimate are needed.

• Resource use models are also easy to understand and can be based on empirical 
parameters.  They are particularly advantageous for modeling ecosystem production at 
landscape-region-global scales. These models have specific merits when applied with 
remote-sensed measures such as vegetation index, phenology, etc.





Modeling Respiration (Chapter 3)

• In-class exercise
• Homework #3

Biophysical Models and Applications in Ecosystem Analysis



Modeling Respiration (Chapter 3)

3.2.1 Linear and log-linear models
3.2.2. Quadratic and polynomial model
3.2.3. Arrhenius model
3.2.4  Logistic model
3.2.5 Gamma Model
3.2.6 Biophysically constrained models
3.2.7. Time series models

Machine learning in modeling carbon fluxes!



Terminology

Autotrophic respiration (Ra): respiration from living plant 
components (leaves, shoots, roots) for constructions and 
maintenances

http://www.steverox.info/Downloads/Software/C%20Accounting%20Definitions.pdf

Heterotrophic respiration (Rh): respiration due to 
decomposition of organic matters (mostly from litter layers 
and soils)

Soil respiration (Rs): The sum of belowground Ra and Rh

Ecosystem respiration (Reco): The sum of aboveground and 
belowground respiration

http://www.steverox.info/Downloads/Software/C Accounting Definitions.pdf




Flux terms and relationships (Chen et al. 2014)



https://www.thinglink.com/scene/680413515290247170 

https://www.thinglink.com/scene/680413515290247170


Just like human being, 
these animals take O2 
and breath out CO2, 
i.e., respiration



https://temperategrasslandsbiomes.weebly.com/soillandform.html 

Vegetation-Soil Profiles

https://temperategrasslandsbiomes.weebly.com/soillandform.html








How much is ecosystem respiration?

Three bioenergy crops at the Kellogg Biological Station (KBS):
Corn, Mixed parries, and switchgrass

GPP = NPP + Ra



Lessons so far: Aboveground C allocation (NPP:GPP)
• The allocation in 2009 (soybean) was the same
• The allocation at Marshall Farm (CRP) to aboveground is substantially higher
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Lessons so far: Aboveground C allocation (NPP:GPP)
• The allocations were the same, except 2013-2014 (drought effects?)
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How much is ecosystem respiration?
Globally, Reco can be less than or greater than GPP

Figure 5. Global total fluxes 
of GPP, NPP, Rh 
(heterotrophic respiration), 
and NEP from different 
sensitivity simulations with 
all forcings (black), 
meteorology alone (red), CO 
2 alone (green), and land 
use change alone (blue) (Yue, X., 

Unger, N., & Zheng, Y. (2015). Distinguishing the drivers of trends in land 
carbon fluxes and plant volatile emissions over the past 3 
decades. Atmospheric Chemistry & Physics, 15(20).



How is respiration measured?



How is respiration measured?

1962



How is respiration measured?



Enclose chambersHow is respiration measured?



Closed chambersHow is respiration measured?



Automated chambers



Open path eddy-covariance system: nighttime flux is considered as Reco



McConnaughey, T. A., Burdett, J., Whelan, J. F., & 

Paull, C. K. (1997). Carbon isotopes in biological 

carbonates: respiration and photosynthesis. Geochimica 

et Cosmochimica Acta, 61(3), 611-622.

Applications of stable 
isotopic analysis



Separating Ra and Rh

https://www.youtube.com/watch?v=1EkkB8JaIzQ 

https://www.youtube.com/watch?v=1EkkB8JaIzQ


Temperature-dependent respiration

Q10 model (Van’t Hoff 1898)

Figure 3-1.  Schematic illustration of change in respiration 
with temperature by an exponential function (Eq. 3.3) for 
four Q10 values (a). The exponential increase of respiration 
can be limited by other ecological resources such as moisture 
(b). The respiration reduction due to low moisture can be 
linear, polynomial, Gamma, logistic, or take other forms. The 
threshold point can be empirically determined for a site or a 
specific time period.

where respiration rate is measured as 
R1 under temperature T1 and R2 is 
measured at temperature T2. Q10 (a 
unitless measure) describes the 
reaction rate increase when the 
temperature is raised by 10 oC (or oK). 



Temperature dependent respiration

Q10 model (Van’t Hoff 1898)

Figure 3-1.  Schematic illustration of change in respiration 
with temperature by an exponential function (Eq. 3.3) for four 
Q10 values (a). The exponential increase of respiration can be 
limited by other ecological resources such as moisture (b). 
The respiration reduction due to low moisture can be linear, 
polynomial, Gamma, logistic, or take other forms. The 
threshold point can be empirically determined for a site or a 
specific time period.

𝑅 = 𝑅0  ∙ 𝑄10

𝑇2−𝑇1
10

This model (Eq. 3.1) is often used in the literature and has been 
expressed as well

where R0 is called reference respiration at 0 oC. 



Temperature dependent respiration

Figure 3-1.  Schematic illustration of change in respiration 
with temperature by an exponential function (Eq. 3.3) for 
four Q10 values (a). The exponential increase of respiration 
can be limited by other ecological resources such as moisture 
(b). The respiration reduction due to low moisture can be 
linear, polynomial, Gamma, logistic, or take other forms. The 
threshold point can be empirically determined for a site or a 
specific time period.

An exponential form is also widely used in respiration 
studies as:

𝑅 = 𝛼 ·  𝑒𝛽·𝑇 
where β is the rate of change with increasing 
temperature and α is the respiration at near zero 
temperature (oC). Q10 is calculated as:

𝑄10 = 𝑒10·𝑇 

Q10 values = 2.1 
1 to 10 (Rs) (Xu & Qi 2001) 
3.4 to 5.6 (Rs), mixed-hardwood forests (Davidson et 

al. (1998)
1.3 to 3.3 (Rs) (Raich & Schlesinger (1992)
1.4±0.1 (Reco) (Mahecha et al. 2010), 



Moisture constraints

• In many ecosystems

• More pronounced in 
Mediterranean ecosystems and 
drylands

• The decreasing trend varies by 
ecosystem type and time (DOY, 
month, year)

• Moisture as a significant variable 
needing to be included in the Q10 
model

• Time is also needed for the model



3.2.1 Linear and log-linear models

Simple linear models for predicting 
respiration (R) using temperature (T, oC):

𝑅 =  𝛼 +  𝛽 ∙ 𝑇 

y = 0.2719x - 0.2903
R² = 0.7433

y = 0.2531x
R² = 0.9379
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Natural logarithm linear model (i.e., Eq. 3.3)

Ln(R) = ln (α) + β ∙ T  

R = exp(ln (α)) + exp(β)) ∙ T  

Or

y = 0.5941e0.1145x

R² = 0.704
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Quadratic and polynomial models 

y = 0.0063x2 + 0.1301x + 0.2831
R² = 0.7638
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𝑅 = 𝛼 + 𝛽0 ∙ 𝑇 + 𝛽1 ∙ 𝑇2 

𝑅 =∝ + 𝛽1 ∙ 𝑇 +  𝛽1 ∙ 𝑇2 +  𝛽3 ∙ 𝑇3 +  𝛽4 ∙ 𝑇4 +  𝛽5 ∙ 𝑇5 

y = 8E-06x5 - 0.0006x4 + 0.0133x3 - 0.0918x2 + 0.1898x + 0.8836
R² = 0.8233
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The polynomial equation can provide 
accurate predictions but lacks any theoretical 
foundation and should not be used beyond 
the range of in situ measurements.



3.2.3. Arrhenius model

The Arrhenius form of the model was proposed by Lloyd and Taylor (1994): Lloyd and Taylor model

𝑅 = 𝑅10 ·  𝑒𝐸0[
1

56.02
−

1

𝑇−227.13
] 

R10: the respiration rate at a reference temperature of 10 oC (a.k.a. reference respiration)

E0: the temperature sensitivity coefficient (oK)

T: soil temperature at a certain (e.g. 5 cm) depth (oK)

Temperature in Kelvin units is used (K = °C + 273.15) 

R10 and E0 are empirically estimated (linear or nonlinear)



𝑅 =
𝛼

1 +  𝑒(𝛽0− 𝛽1∙𝑇)

Barr et al. (2002) 

3.2.4 Logistic model

• Nonlinear regression analysis is 
performed for estimating the 
parameters

• The logistic model assumes that the 
rate of change (i.e., density 
function) in respiration with 
temperature is not a constant, but 
peaks at a specific temperature and 
eventually returns to zero at high 
temperature.
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Demonstration of model application in Excel!



3.2.5 Gamma Model

Gamma model is expressed as Khomik et al.  (2009) :

• Coefficients are empirically estimated
• when a is equal to zero, the model becomes an exponential 

function,
• when b1 is equal to zero, the model becomes a power function
• It allows R to decrease at high temperatures when respiration is 

constrained
• asymmetric changes by its maximum value

The T (oC) value at which R peaks (i.e., Tmax, 
oC) can be determined as:

𝑅 = 𝑇𝛼 ∙ 𝑒𝛽0+ 𝛽1∙𝑇 

𝑇𝑚𝑎𝑥 =
𝛼

−𝛽1
− 40   
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Demonstration of model application in Excel!



3.2.6 Biophysically constrained models

DeForest et al. (2006) 

𝑅 = [𝑅10·  𝑒𝛽·𝑇] + [𝑎 ∙ 𝜃 + 𝑏] 

Martin et al. (2009)

𝐿𝑛 𝑅 = 𝛽0 + 𝛽1 ∙ 𝑇 +  𝛽2 ∙ 𝑇2 + 𝛽3 ∙ 𝜃 + 𝛽4 ∙ 𝜃2 + 𝛽5 ∙ (𝑇 ∙ 𝜃)] 

Concilio et al. (2005)

𝑅 = 𝑅0 ·  𝑒𝛽0·𝑇 ∙  𝑒𝛽1∙𝜃 ∙ 𝛽2 ∙ 𝑇 ∙  𝜃 



3.2.7. Time series models

Soil and ecosystem respiration change over time due to not only the corresponding 
changes in significant biophysical variables but also the temporal correlations from memory 
or legacy effects, especially under extreme climate and disturbances.

Xu et al. (2011) 

𝑅 = 𝛼 ·  𝑒𝛽0·𝑇 + 𝛽1 ∙ 𝜃 − 𝛽2
2 + 𝛽3 ∙ (𝐷𝑂𝑌 − 𝛽4)2

Davidson et al. (2006) 

𝑅 = κ0 + κ1 ∙ sin 𝐷𝑂𝑌∗ +  𝜑1 +  κ2 ∙ sin 2 ∙ 𝐷𝑂𝑌∗ + 𝜑2

1 365



3.4 Model performances

Figure 3-4.  Modeled soil 
respiration from three sets of 
models: (a) linear (log linear) 
models, (b) nonlinear models, 
and (c) moisture-included 
models. Field data were 
collected at Chamber #1 every 2 
hours from March 18 through 
December 17 in 2015 at a larch 
plantation in the Mt. Fuji Flux 
Site, central Japan (Teramoto et 
al. 2019). 



3.4 Model performances

Figure 3-5.  Comparisons of 
predicted and measured soil 
respiration (μmol CO2 m-2 s-1) 
from 9 models (Fig. 3-4). The 
cyan lines are the 1:1 ratios. Field 
data were collected with an 
automated respiration chamber 
every 2 hours from March 18 
through December 17 in 2015 at 
a larch plantation in the Mt. Fuji 
Flux Site, Japan (Teramoto et al. 
2019). 



3.4 Model performances

Figure 3-6.  Comparisons of 
predicted and measured soil 
respiration (μmol CO2 m-2 s-1) 
between DOY-included model and 
Lloyd-Taylor model. Field 
measurements (gray dots) were 
collected with an automated 
respiration chamber every 2 hours 
from March 18 through December 
17 in 2015 at a larch plantation in 
the Mt. Fuji Flux Site, central 
Japan (Teramoto et al. 2019). 



Summary

• Simple linear, power, and polynomial forms are not recommended in modeling 
respiration regardless of their simple-to-use nature.

• Selection of model form is critical for producing reliable predictions. Residual analysis 
can help development of additional covariates and model forms.

• Incorporating other independent variables is necessary. Soil moisture, soil carbon and 
nutrient content, biomass or production, canopy cover, litter depth, etc. are among 
the potential factors to be considered.

• Multiple model forms or a unique set of coefficients for the same model need to be 
used for different times such as seasons (phenophases), climatic conditions, and 
disturbances. For modeling seasonal changes, day of year should be included in the 
models.





In class exercise

Find out the Q10 value of soil 
respiration at Chamber 1 of the 
Larch forest, Japan
(Data file: Q10Model.xlsx)



Eddy Covariance (EC) Technology for direct measurement of net exchange 
of trace gases, momentum, energy, and other materials at ecosystem level

• ~2000 EC towers since the first one at the 
Harvard Forest in 1989

• Lots of experience, tools, maintenance 
protocols, data process, etc.

• Beyond CO2: CH4, N2O, CO, NOx, aerosols, 
Albedo, etc.

• Goodwill for data sharing => global synthesis 
and knowledge development

• Communication and coordinated efforts (e.g., 
FLUXNET, AmeriFlux, USCCC, etc.)

• Many more

Machine Learning and Modeling Fluxes



Among the Challenges are

1) 2000+ EC towers are not enough to cover all ecosystems, with their 
distributions seriously skewed

2) Most tower sites are not large enough

3) Our understanding of the regulation mechanisms on C fluxes is 
based on a few biophysical models, often empirical, such as Q10, 
Michaellis-Menten, Farquar, Penmen-Monteith, etc. 

4) There lack reliable models for CH4 and N2O fluxes



Among the Challenges are

• 2000+ EC towers are not enough to cover all ecosystems, with their 
distributions seriously skewed

https://fluxnet.org/sites/site-summary/

https://fluxnet.org/sites/site-summary/


Among the Challenges are

• Our understanding of the regulation mechanisms on C fluxes is based on a 
few biophysical models, often empirically tried, such as Q10, Michaellis-
Menten, Farquar, Penmen-Monteith, etc. 

𝑃𝑛 =
𝛼 ∙ 𝑃𝐴𝑅 ∙  𝑃𝑚

𝛼 ∙ 𝑃𝐴𝑅 +  𝑃𝑚
 −  𝑅𝑑

𝑃𝑛 =
2∙𝛼∙𝑃𝐴𝑅/𝑃𝑚

1+ 𝛼∙
𝑃𝐴𝑅

𝑃𝑚
 + (1+𝛼∙

𝑃𝐴𝑅

𝑃𝑚
)2−4∙𝛼𝑃𝐴𝑅/𝑝𝑚

  

3 parameters

4 parameters

These are based on 
PAR & Ta, with many 
other potential 
drivers not used!



Yet, we have dozens of other variables collected at an EC tower, but not used



Among the Challenges are

• There lack reliable models for CH4 and N2O fluxes

Irvin et al. 2021. https://doi.org/10.1016/j.agrformet.2021.108528



Opportunities

1. Rich data
EC Towers

Ta, VDP, Soil, 
turbulence, 

…

Biometric
LAI, height, 

species, 
density, …

RS
EVI, cover, 
spatial Ms, 

DEM,  …

2. Evolving analytical tools

Mechanistic 
models

Computing
Power

Machine 
Learning

All contribute to the magnitude and dynamics of fluxes Mechanistic and/or empirical explorations

Accurate predictions of fluxes and underline regulations



Machine Learning in flux studies?

Speech Recognition

Human expertise does not exist

Personalized Medicine

Models must be customized

Genomics

Huge amounts of data

Credit: Dr. Jiliang Tang



The fundamental concept of Machine Learning (ML) in flux studies

All bio-physical variables are responsible, at various degrees, for the magnitude and 
dynamics of fluxes, with known or unknown mechanisms.

Complex tasks Continuously updated

Credit: Dr. Jiliang Tang



Deep Learning vs Traditional Machine Learning

Credit: Dr. Jiliang Tang

Partial knowns & unknowns
In flux studies

WD, WS, U*, CO2, 
RH, …

Fc

Common Knowledge
In flux studies

Ta, VPD, Ms, PAR, 
Rn, DOY, G, Ts, …

Fc
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RNN model

Predictions based on conventional “biophysical models” and recurrent neural 
network (RNN) at an agricultural land in KBS



Proposed architecture of GNN & RNN for estimating model parameters with 
partially known, or unknown mechanisms by assuming missing values of 
∅𝑖𝑗 𝑡  𝑎𝑛𝑑 VI(t) at any giving time (t) and space (i,j) (i.e., nodes) 

RNN GNN



Fully Connected Layer (FC Layer)

Credit: Dr. Jiliang Tang



7-3
epoch: 36 validation: rmse: 0.7695824495942905
validation: best rmse: 0.7615167483546836
test rmse: 0.6335910434578435

8-2
epoch: 35 validation: rmse: 0.6659846320595684
validation: best rmse: 0.6572025276120753
test rmse: 0.8090676608599882

Modeling NEE of carbon using RNN at a mixed prairie in MI (Zou et al. in process)



Homework #3:

Using the respiration measurements in Mt. Fuji 
(homework3. xlsx), estimate model coefficients 
and compare model performances of

1) Q10 model
2) One of the biophysically constrained 

respiration model
3) One of the time series model

Briefly describe the model strengths and 
weakness

Deadline: 2:30 pm, Nov. 18, 2021



Q&A from the Class

In class exercise of respiration models by group

Note:  Comments and typos for each chapters are welcome!



Field Trip to Battle Creek (Urban Flux Tower) and KBS (chambers and towers)

8:30 Leave geography building
9:45 Arrive Battle Creek Area Mathematics and Science Center (Kevin Postma arrives)
 Scott Hanson, Science Instructor
10:30 Heading out to KBS, BCSE plots (Kevin Kahmark, kahmark@msu.edu)
11:45 LTER installations (Kevin K)
12:30 Lunch and KBS Labs (Kellogg Manor House)
2:00 Marshal Fam (EC towers)
3:00 Heading back to MSU
4:300 Arrive Geography Building

Notes
• Bring own lunch and water
• Raingear (?)
• Travel approval (check your email) for acceptance
• ?

mailto:kahmark@msu.edu
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